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The impact of sparsity

Seminal convex estimator for joint regression and feature selection: Lasso

β̂ ∈ argmin
β∈Rp

1

2
‖y −Xβ‖2 + λ ‖β‖1

Key property if λ not too small: #{j : β̂j 6= 0} � p, by nonsmoothness of ‖·‖1

Statisticians love it (Candès et al., 2006; Donoho, 2006; Hastie et al., 2015):
I provable recovery guarantees if real model is sparse + good properties on X
I basically same error rate as least squares but handles p� n

What about computing the Lasso?
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Computing the Lasso estimator

Initially a hard problem (non-smoothness), but optimizers now love it too.

min
β∈Rp

f(β) + g(β) proxg(x) = argmin
y

1

2
‖x− y‖2 + g(y)

I “smooth + proximable” problem, amenable to proximal splitting methods (Combettes
and Wajs, 2005) e.g. FISTA (Beck and Teboulle, 2009)

βk+1 = proxτg(β
k − τ∇f(βk))

I from curse to blessing of non-smoothness (Iutzeler and Malick, 2020): leverage
sparsity of iterates with screening or working sets (Ndiaye et al., 2017)

I even faster algorithm: coordinate descent
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(Proximal) coordinate descent

I Do proximal gradient descent steps on one coordinate at a time
I Should not converge... but does for smooth functions, smooth + separable

Lasso is the prototypical problem solvable by coordinate descent!

argmin
β∈Rp

1

2
‖y −Xβ‖2 + λ

p∑
j=1

|βj |

4



CD for Lasso can be quite fast (Bertrand and Massias, 2021)

GD

CD

GD - inertial

CD - inertial

CD - ours
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Main reason for success of CD

I One full update of β not more costly than one gradient in general: O(np)
I Much larger stepsizes than GD (1/Lj vs 1/L, coordinatewise vs global gradient

Lipschitz constant)
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In pratice, CD can be at least one order of magnitude faster than FISTA
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Impact on practitioners

I With e�cient implementations of Lasso solvers such as Celer (Massias et al., 2020) it
is possible to solve problems with millions of variables in a few seconds

I Interpretable models are popular among practitioners
I Large scale applications in biology, neuroscience, geophysics... (Muir and Zhan, 2021;

Kim et al., 2021; Reidenbach et al., 2021)

So are we done? Why this talk?
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Lasso has limitations

I Amplitude bias (Zhang and Huang, 2008)

I Di�culty to deal with correlated coe�cients (Zou and Hastie, 2005)

I Many false positive, false positive occur even for strong regularization (Su et al., 2017)

Potential solution: non convex penalties (`q , MCP, SCAD, log) for which e�cient solvers
such as skglm also exist (Bertrand et al., 2022). . .

... but convexity is lost and so far you’re never sure of what you get in the end.

We’ll take the convex road!
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A convex alternative: SLOPE

Sorted L-One Penalized Estimator, based on the sorted `1 norm (Bogdan et al., 2013; Zeng
and Figueiredo, 2014):

λ1 ≥ . . . ≥ λp ≥ 0

J(β) =

p∑
j=1

λj |β(j)| =
p∑
j=1

λ(j)− |βj |

where (·) reorders β by descending magnitude ((·)− its inverse):

|β(1)| ≥ . . . ≥ |β(p)|

↪→ largest coe�cients are more penalized

Generalization of two peculiar instances:
I λ1 = . . . = λp → Lasso penalty
I λ2 = . . . = λp = 0→ `∞ penalty
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SLOPE properties

I convex (pointwise supremum of a�ne hence convex functions)
I non di�erentiable along axes AND when coe�cients are equal in magnitude
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SLOPE solves some of the Lasso’s problem

I false discovery rate control (Bogdan et al., 2015; Kos and Bogdan, 2020)

I coe�cient clustering (Figueiredo and Nowak, 2016; Schneider and Tardivel, 2020):
|βj | takes m distinct values c1 > c2 > · · · > cm ≥ 0, on sets of indices C1, C2, . . . , Cm

I sparsity and ordering patterns recovery (Bogdan et al., 2022)
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The Optimizer’s point of view

The prox of SLOPE is (surprisingly?) known, based on isotonic regression
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↪→ ISTA, FISTA can be used

Could we still use proximal CD?
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CD cannot be applied for lack of separability
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CD can only move along the dashed line and thus stays there
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Key issue: clusters are not known

If clusters C1, . . . , Cm∗ of the solution β∗ are known, the penalty becomes separable
(Dupuis and Tardivel, 2022) and one can solve:

min
z∈Rm∗

(
1

2

∥∥∥y −X m∗∑
i=1

∑
j∈C∗i

zi sign(β
∗
j )ej

∥∥∥2 + m∗∑
i=1

|zi|
∑
j∈C∗i

λj

)
.

Idea: alternate between cluster identification steps and fast CD step
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Why relying on PGD for cluster identification?

Def: J is said to be partly smooth at x relative to a setM containing x if:
1. M is a C2-manifold around x and J restricted toM is C2 around x.
2. The tangent space ofM at x is the orthogonal of the parallel space of ∂J(x).
3. ∂J is continuous at x relative toM.

Prop: The SLOPE is partly smooth at any x w.r.t.M = “vectors with same support, signs
and clusters as x” (linear manifold)

(links with polyhedral norms (Vaiter et al., 2017))

↪→ PGD identifies the clusters in a finite number of iterations (Liang et al., 2014)
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Minimization on a single cluster

When we update the value taken by β on its cluster Ck we let:

βi(z) =

{
sign(βi)z , if i ∈ Ck ,
βi , otherwise .

Minimizing the objective in this direction amounts to solving the following
one-dimensional problem:

min
z∈R

(
G(z) =

1

2
‖y −Xβ(z)‖2 +H(z)

)
,

where
H(z) = |z|

∑
j∈Ck

λ(j)−z +
∑
j /∈Ck

|βj |λ(j)−z

is the partial sorted `1 norm with respect to the k-th cluster and λ(j)−z means that the
inverse sorting permutation (j)−z is defined with respect to β(z).
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The partial sorted `1 norm
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How do we solve the minimization for one cluster?

1D minimization pb, optimality condition:

∀δ ∈ {−1, 1}, G′(z; δ) ≥ 0

G′(z; δ) = δ
∑
j∈Ck

X>:j (Xβ(z)− y) +H ′(z; δ)

and H is the partial sorted L1 norm.
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Expression for the directional derivative

Thm: Let c\k be the set containing all elements of c except the k-th one:
c\k = {c1, . . . ck−1, ck+1, . . . , cm}. Let εc > 0 such that

εc <
∣∣ci − cj∣∣, ∀ i 6= j and εc < cm if cm 6= 0 .

The directional derivative of the partial sorted `1 norm with respect to the k-th cluster,
H , in the direction δ is

H ′(z; δ) =



∑
j∈C(εc)

λ(j)−εc
if z = 0 ,

sign(z)δ
∑

j∈C(z+εcδ)

λ(j)−z+εcδ
if |z| ∈ c\k \ {0},

sign(z)δ
∑

j∈C(z)

λ(j)−z otherwise .
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Solution of update given by the “SLOPE thresholding operator”

Thm: argminz G(z) = T (ck ‖x̃‖2 − x̃T (Xβ − y); ‖x‖2 , c\k, λ)

−ω
c
\k 1
−
S

(c
\k 1

+
ε c

)
−ω
c
\k 1
−
S

(c
\k 1
−
ε c

)
−ω
c
\k 2
−
S

(c
\k 2

+
ε c

)
−ω
c
\k 2
−
S

(c
\k 2
−
ε c

)
-S

(0
)

S
(0

)

ω
c
\k 2

+
S

(c
\k 2
−
ε c

)
ω
c
\k 2

+
S

(c
\k 2

+
ε c

)
ω
c
\k 1

+
S

(c
\k 1
−
ε c

)
ω
c
\k 1

+
S

(c
\k 1

+
ε c

)

−c\k1

−c\k2

c
\k
2

c
\k
1

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
γ

−0.5

0.0

0.5

T
(γ
,ω

;c
,λ

)

20



The full algorithm

input: X ∈ Rn×p, y ∈ Rn, λ ∈ {Rp : λ1 ≥ λ2 ≥ · · · > 0}, v ∈ N, β ∈ Rp
1 for t← 0, 1, . . . do
2 if t mod v = 0 then
3 β ← proxJ/‖X‖22

(
β − 1

‖X‖22
XT (Xβ − y)

)
4 Update c, C
5 else
6 k ← 1
7 while k ≤ |C| do
8 x̃k ← XCk sign(βCk)

9 z ← T (ck ‖x̃‖2 − x̃T (Xβ − y); ‖x‖2 , c\k, λ)
10 βCk ← z sign(βCk)
11 Update c, C
12 k ← k + 1

13 return β
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Benchmarks
oracle CD
hybrid (ours)

ADMM (ρ = 100)
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Part II: easier and better benchmarks with Benchopt

Bench pt
“Benchopt: Reproducible, e�cient and collaborative optimization benchmarks”, NeurIPS 2022.

https://benchopt.github.io/
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Benchmarking algorithms is a pain

Machine Learning research relies on numerical validation.

Pain points of a benchmark:
I competitors’ methods do not work out of the box.
I re-code methods and tools to integrate a new method.
I hard to extend with new settings.

all of this started from scratch by every submission!

Benchopt produces open, reproducible, extendable benchmarks
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How does Benchopt do it?

Benchopt is a framework to organize and run benchmarks:
I one repository per benchmark
I one base open source Python CLI to run them

3 components: Objective, Dataset, Solver

.PDF

.HTML

.CSV
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Structure of a benchmark

benchmark/

objective.py

datasets/

dataset1.py

dataset2.py

solvers/

solver1.py

solver2.py

Modular & extendable

New solver? add a file
New dataset? add a file
New metric? modify objective
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Interactive results exploration
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Benchopt makes your life easy

I build on previous benchmarks
I use solvers in Python, R, Julia, binaries...
I monitor any metric you want altogether (test/train loss, ...)
I add parameters to solvers
I share and publish HTML results
I run all benchmarks in parallel
I cache results
I and much more!
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Existing benchmarks

Examples of existing benchmarks:
I Resnet18
I Lasso
I Slope
I MCP
I Logistic regression

I ICA
I Total Variation
I Ordinary Least Squares
I Non convex sparse regression
I linear SVM

Start yours with https://github.com/benchopt/template_benchmark!
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Example: Resnet benchmark

I image classification with resnet18
I various optimization strategies
I compare pytorch and tensorflow

I publish reproducible SOTA for baselines

Best Adam

SGD + data aug. + momentum

Lookahead

Vanilla SGD

SGD + data aug. + momentum + cosine LR sched.

SGD + data aug.

Best SGD

Best SGD (TF/Keras)
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Definition of the SLOPE thresholding operator

Define S(x) =
∑
j∈C(x) λ(j)−x and let

T (γ;ω, c, λ) =



0 if |γ| ≤ S(εc),
sign(γ)ci if ωci + S(ci − εc)

≤ |γ| ≤
ωci + S(ci + εc),

sign(γ)
ω

(
|γ| − S(ci + εc)

)
if ωci + S(ci + εc)

< |γ| <
ωci−1 + S(ci−1 − εc),

sign(γ)
ω

(
|γ| − S(c1 + εc)

)
if |γ| ≥ ωc1 + S(c1 + εc).

with εc such that εc <
∣∣ci − cj∣∣, ∀ i 6= j and εc < cm if cm 6= 0 .

Let x̃ = XCk sign(βCk) and r = y −Xβ. Then

T
(
ck ‖x̃‖2 + x̃T r; ‖x‖2 , c\k, λ

)
= argmin

z∈R
G(z) .
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