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starting point

This talk is about nowcasting the number of deaths on a given
with respect to what is reported so far.

For a specific day it is only often after several days (weeks)
that one has access to how many actually died that day.
In Sweden and in the UK the data is presented before fully
collected.
To have early access to the number of death is important for
knowing where the epidemic is going and what efforts needs to
be put in.
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Structure

Our goal is to model how many died on a given day. We
denote:

deat − actual number of indivuals that died of covid on day t

Our data is how many people are reported at a given day. We
denote:

rept,k−How many indivuals reported dead on day t reported at day k

4 / 28



Data

Thus let us examine how many died on 19th of May 2020 (t):

k: Report date (
∑k

j=t rept,j)
t 05− 19 0

t+ 1 05− 20 5
t+ 2 05− 21 12
t+ 3 05− 22 12
t+ 4 05− 23 15
...

...
t+ 349 2021− 05− 05 55
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Capture-Retain

Long time ago, I worked on estimating populations of
natterjack toads, in Archipelago of Bohuslän.

Estimation of population is well studied problem in ecology.
Typical methods are type of capture-recapture method.
If p is probability of catching an animal and n is the number of
catches and N the target population. Then approximately
N ≈ n

p .
On the islands there was small isolated populations. This
meant that one could use rejection sampling or capture-retain
method.
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Capture-Retain 2

One collects as many toads as one can (in a bucket). Then
one waits a while and then one do it again. Repeat the
procurer T times.
This gives one a series of observation:

toad1, toad2, . . . , toadT

If one collects the toads from a small populations then one
should get fewer toads each time and this actually gives some
information of the actual size of the population.
Suppose the probability of catching a toad is p and the true
population is N then:

toad1 ∼ Bin(N, p)
toad2 ∼ Bin(N − toad1, p)
toad3 ∼ Bin(N − toad1 − toad2, p)

Now we can estimate both p and N .
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Capture-Retain example

In a Bayesian frame work we can estimate them using
posterior distribution. Or treat N̂ and p̂ as parameters and
estimate the ML

I realised yesterday that the ML is clearly biased here but it
seems easy to correct this, but that for an other day maybe
(Does not matter for our data since number of observations
will be large).
Let for example be Bayesian and study an example.
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Capture-Retain example

Observe:

toad = [22, 15]

posterior:

π(N, p|toad) ∝
(
N

22

)(
N − 22

15

)
p22+15(1− p)2N−22−15
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Capture-Retain example

Observe:

toad = [22, 15, 14]

posterior:

π(N, p|toad) ∝

(
m∏
i

(
N −

∑i−1
1 toadi

toadi
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Capture-Retain example

Observe:

toad = [22, 15, 14, 9]

posterior:

π(N, p|toad) ∝

(
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Capture-Retain example

Observe:

toad = [22, 15, 14, 9, 7]

posterior:

π(N, p|toad) ∝

(
m∏
i

(
N −

∑i−1
1 toadi

toadi

))
p
∑
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Capture-Retain example

Observe:

toad = [22, 15, 14, 9, 7, 6]

posterior:

π(N, p|toad) ∝

(
m∏
i

(
N −

∑i−1
1 toadi

toadi

))
p
∑

i toadi(1− p)mN−
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i toadi
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Back to the covid-data

For each given day we can apply the same idea for the
reporting

rept,· = [rept,t, rept,t+1, ..., rept,T ].

and thus estimate deat using the model

rept,t ∼ Bin(deat, p0)
rept,t+1 ∼ Bin(deat − rept,t, p1)

...

rept,t+i ∼ Bin(deat −
i−1∑
j=0

rept,t+j , pi)

I had missed this for medical data this had been done in
previously in [Lawless, J. F. 1994]. (Of course they missed the
biological connection dating back to [Moran, P. A. P. 1951])
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overdispersion

Often the data when working with Binomial distribution is
overdispersed (higher variability compared to the distribution),
here there is no exception.

Once enough data is collected one can assume that one have
the truth. In uk we are very stable after 30 days (much
sooner). In this case things reduces to that both rept,· and
deat is known and we only need to estimate p.
Let us examine how many are reported at lag 2 (number of
cases reported two days after).
With a bit of simplification we approximately have:

p̂2 =

∑
t rept,t+2∑
t deat

≈
∑

t rept,t+2∑
t

∑30
i=0 deat,t+i
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overdispersion

Given p̂ we have approximately

rept,t+2 ∼ Bin(rept,t+30 ≈ deat, p̂2)

Thus we generate CI for rept,t+2

deat
to check the Binomial

distribution assumption.
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overdispersion 3

To address this issue we instead of assuming a Binomial
distribution use a Beta-Binomial distribution.

This corresponds to:

p ∼ Beta(µ,M),

rept,t+2 ∼ Bin(
30∑
i=0

deat,t+irept,t+i ≈ deat, p).

One can integrate out p and get

rept,t+2 ∼ BB(
30∑
i=0

deat,t+irept,t+i ≈ deat, µ,M).

here µ is the expected value while M is overdispersion.
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overdispersion 3
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Sweden

For Sweden things are a bit more complicated due to clear
time trend in the data (at the beginning of the pandemic)

We will ignore this for now and focus on the second wave.
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result

So our model at day t is now

rept, ∼ BB(deat, θBB)

where θBB is set of parameters controlling for different lags,
report days etc.
Let us examine the result for Sweden at 17th of November
2020. Where we fitted θBB with ML removing the thirty latest
dates and then sample from the posterior distribution i,e.

deat|rept,, θBB ∼ BB(rept,; deat, θBB)
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result
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result

It is easy to see that the deaths are correlated which the model
does not take into account.

The underlying factor is the number of infected (also by age
group matters).
We can separately (from the reporting) try to model the
epidemic.

deat|deat−1:1 ∼?
rept, ∼ BB(deat, θBB)

18 / 28
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Adding other information

We also have other data that correlates with the deaths: ICU,
hospitalized with Covid, and infected in eldercare.
Let Mt denote the one of these time series (or a smoothed
version) we can use

deat ∼ Po(exp (β0 + β1Mt−c ))

here we need to estimate β0, β1, c.
We in-fact included Mt = ICUt in our model.... at the
completely wrong time.
Issue they only correlate with the deat and this correlation can
change over time
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Adding other information
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Gaussian processes ideal

We instead would like to incorporate an underlying pandemic
trend.

Ideally we would like to model as follows

X(t) ∼ GP (t; θGP ),

λt = exp(X(t)),

deat ∼ Poisson(λt),
rept, ∼ BB(deat, θBB).

Then sampling from the posterior distribution deat|rept, one
gets predictions.
However, this requires a bit of coding and also mentoring of
the MCMC chains which we (I) am to lazy to do.
Instead we look to approximate steps in the chain to get a
faster algorithm.

21 / 28



Gaussian processes ideal

We instead would like to incorporate an underlying pandemic
trend.
Ideally we would like to model as follows

X(t) ∼ GP (t; θGP ),

λt = exp(X(t)),

deat ∼ Poisson(λt),
rept, ∼ BB(deat, θBB).

Then sampling from the posterior distribution deat|rept, one
gets predictions.
However, this requires a bit of coding and also mentoring of
the MCMC chains which we (I) am to lazy to do.
Instead we look to approximate steps in the chain to get a
faster algorithm.

21 / 28



Gaussian processes ideal

We instead would like to incorporate an underlying pandemic
trend.
Ideally we would like to model as follows

X(t) ∼ GP (t; θGP ),

λt = exp(X(t)),

deat ∼ Poisson(λt),
rept, ∼ BB(deat, θBB).

Then sampling from the posterior distribution deat|rept, one
gets predictions.

However, this requires a bit of coding and also mentoring of
the MCMC chains which we (I) am to lazy to do.
Instead we look to approximate steps in the chain to get a
faster algorithm.

21 / 28



Gaussian processes ideal

We instead would like to incorporate an underlying pandemic
trend.
Ideally we would like to model as follows

X(t) ∼ GP (t; θGP ),

λt = exp(X(t)),

deat ∼ Poisson(λt),
rept, ∼ BB(deat, θBB).

Then sampling from the posterior distribution deat|rept, one
gets predictions.
However, this requires a bit of coding and also mentoring of
the MCMC chains which we (I) am to lazy to do.

Instead we look to approximate steps in the chain to get a
faster algorithm.

21 / 28



Gaussian processes ideal

We instead would like to incorporate an underlying pandemic
trend.
Ideally we would like to model as follows

X(t) ∼ GP (t; θGP ),

λt = exp(X(t)),

deat ∼ Poisson(λt),
rept, ∼ BB(deat, θBB).

Then sampling from the posterior distribution deat|rept, one
gets predictions.
However, this requires a bit of coding and also mentoring of
the MCMC chains which we (I) am to lazy to do.
Instead we look to approximate steps in the chain to get a
faster algorithm.

21 / 28



Gaussian processes approximation

Since the data seems to be Poisson (or negative binomial )
distributed we use a square root transformation

deasqrtt =
√
deat

this since it gives the right relation between variance and mean.

Then the latent part becomes

X(t) ∼ GP (t; θ)
deasqrtt ∼ N

(
X(t), σ2

)
Yet the likelihood component

rept, ∼ BB(deat, θBB)

is also still intractable and this we will approximate in the next
step.
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Gaussian processes approximation

Here it is easy to sample from deat|rept, from the likelihood
only model (denoted Fsimple):

rept, ∼ BB(deat, θBB).

From these samples we approximate the posterior distribution
with the following

f(
√
deat|rept,) ≈ N

(√
deat;µt, σ

2
)

Where
µt = EMC

[√
deat|rept,,Fsimple

]
and

σ2t = VMC
[√

deat|rept,,Fsimple

]
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result
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Gaussian processes issues

The GP assumes a certain (we fit from data) a certain
smoothness of the latent process.
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further issues

We are using a metric for prediction fit known as continuous
probability rank score (CRPS).
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Sweden model final
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Uk data final
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