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the partition ÎMAP(x) that maximises P(Π = I | x)
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In R.(2019) the MAP in the following model was analysed:
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θ = (θJ)J∈J | J
iid∼ N (~µ,T )

xJ = (xj)j∈J | J ,θ
iid∼ N (θJ ,Σ) for J ∈ J

The first result was that the clusters in the MAP partition are linearly
separated.
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Normal-Normal CRP model cnt.

‘Frequentists validation of the MAP’
Let X1,X2, . . . be an IID sample from P.
How does ÎMAP(X1:n) behave as n→∞?

Result (size of clusters)

If X1,X2, . . . ∼ P, E ‖X‖4 <∞, then a.s. for every r > 0

lim inf
n→∞

min{|J| : J ∈ ÎMAP(X 1:n),∃j∈J‖Xj‖ < r}/n := γ > 0.
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min{|J| : J ∈ ÎMAP(X 1:n),∃j∈J‖Xj‖ < r}/n := γ > 0.



Normal-Normal CRP model cnt.

‘Frequentists validation of the MAP’
Let X1,X2, . . . be an IID sample from P.
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n = 1000

Result (size of clusters)

If X1,X2, . . . ∼ P, E ‖X‖4 <∞, then a.s. for every r > 0

lim inf
n→∞

min{|J| : J ∈ ÎMAP(X 1:n),∃j∈J‖Xj‖ < r}/n := γ > 0.



Normal-Normal CRP model cnt.

‘Frequentists validation of the MAP’
Let X1,X2, . . . be an IID sample from P.
How does ÎMAP(X1:n) behave as n→∞?
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n = 1000

Question:
Can we control the (rela-
tive) size of the smallest
cluster?

Partly. . .

Of those clusters that in-
tersect given ball

Result (size of clusters)

If X1,X2, . . . ∼ P, E ‖X‖4 <∞, then a.s. for every r > 0

lim inf
n→∞

min{|J| : J ∈ ÎMAP(X 1:n),∃j∈J‖Xj‖ < r}/n := γ > 0.



Normal-Normal CRP model cnt.

‘Frequentists validation of the MAP’
Let X1,X2, . . . be an IID sample from P.
How does ÎMAP(X1:n) behave as n→∞?
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n = 1000

Question:
Can we control the (rela-
tive) size of the smallest
cluster?
Partly. . .

Of those clusters that in-
tersect given ball

Result (size of clusters)

If X1,X2, . . . ∼ P, E ‖X‖4 <∞, then a.s. for every r > 0

lim inf
n→∞

min{|J| : J ∈ ÎMAP(X 1:n),∃j∈J‖Xj‖ < r}/n := γ > 0.



Normal-Normal CRP model cnt.

‘Frequentists validation of the MAP’
Let X1,X2, . . . be an IID sample from P.
How does ÎMAP(X1:n) behave as n→∞?
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n = 1000

Question:
Can we control the (rela-
tive) size of the smallest
cluster?
Partly. . .

Of those clusters that in-
tersect given ball

Result (size of clusters)

If X1,X2, . . . ∼ P, E ‖X‖4 <∞, then a.s. for every r > 0

lim inf
n→∞

min{|J| : J ∈ ÎMAP(X 1:n),∃j∈J‖Xj‖ < r}/n := γ > 0.



Normal-Normal CRP model cnt.

‘Frequentists validation of the MAP’
Let X1,X2, . . . be an IID sample from P.
How does ÎMAP(X1:n) behave as n→∞?

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

n = 100

Question:
Can we control the (rela-
tive) size of the smallest
cluster?
Partly. . .

Of those clusters that in-
tersect given ball

Result (size of clusters)

If X1,X2, . . . ∼ P, E ‖X‖4 <∞, then a.s. for every r > 0

lim inf
n→∞

min{|J| : J ∈ ÎMAP(X 1:n),∃j∈J‖Xj‖ < r}/n := γ > 0.



Normal-Normal CRP model cnt.

‘Frequentists validation of the MAP’
Let X1,X2, . . . be an IID sample from P.
How does ÎMAP(X1:n) behave as n→∞?
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n = 500

Question:
Can we control the (rela-
tive) size of the smallest
cluster?
Partly. . .

Of those clusters that in-
tersect given ball

Result (size of clusters)

If X1,X2, . . . ∼ P, E ‖X‖4 <∞, then a.s. for every r > 0

lim inf
n→∞

min{|J| : J ∈ ÎMAP(X 1:n),∃j∈J‖Xj‖ < r}/n := γ > 0.



Normal-Normal CRP model cnt.

‘Frequentists validation of the MAP’
Let X1,X2, . . . be an IID sample from P.
How does ÎMAP(X1:n) behave as n→∞?
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n = 1000

Question:
Can we control the (rela-
tive) size of the smallest
cluster?
Partly. . .

Of those clusters that in-
tersect given ball

Result (size of clusters)

If X1,X2, . . . ∼ P, E ‖X‖4 <∞, then a.s. for every r > 0

lim inf
n→∞

min{|J| : J ∈ ÎMAP(X 1:n),∃j∈J‖Xj‖ < r}/n := γ > 0.



Normal-Normal CRP model cnt.

‘Frequentists validation of the MAP’
Let X1,X2, . . . be an IID sample from P.
How does ÎMAP(X1:n) behave as n→∞?

n = 1000

Question:
Can we control the (rela-
tive) size of the smallest
cluster?
Partly. . .

Of those clusters that in-
tersect given ball

Result (size of clusters)

If X1,X2, . . . ∼ P, E ‖X‖4 <∞, then a.s. for every r > 0

lim inf
n→∞

min{|J| : J ∈ ÎMAP(X 1:n),∃j∈J‖Xj‖ < r}/n := γ > 0.



Induced partitions

Let A be a fixed partition of Rd :

Let X1,X2, . . . ,X
iid∼ P
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Induced partitions

Let A be a fixed partition of Rd :

Let X1,X2, . . . ,X7
iid∼ P

IA7 (X 1:7) =
{
{1}, {2, 7}, {3, 4, 6}, {5}

}



Induced partitions

Let A be a fixed partition of Rd :

Let X1,X2, . . . ,X7
iid∼ P

IA7 (X 1:7) =
{
{1}, {2, 7}, {3, 4, 6}, {5}

}
you may compute P(IA7 (X 1:7) |X 1:7)



Induced partitions

Let A be a fixed partition of Rd :

Let X1,X2, . . . ,X10000
iid∼ P



Induced partitions

Let A be a fixed partition of Rd :

Let X1,X2, . . . ,X10000
iid∼ P

IA10000(X 1:10000) =
{
{. . .}, {. . .}, {. . .}, {. . .}, {. . .}

}
P(IA10000(X 1:10000) |X 1:10000) ≈???



Induced partitions

Let A be a fixed partition of Rd :

Let X1,X2, . . . ,X10000
iid∼ P

Proposition

n

√
P(IAn (X 1:n) |X 1:n)

a.s.� exp {∆P(A)} where

∆P(A) =
∑
A∈A

P(A) lnP(A) +
1
2

∑
A∈A

P(A) · ‖E (Σ−1
0 X |X ∈ A)‖2



Induced partitions

Let A be a fixed partition of Rd :

Let X1,X2, . . . ,X10000
iid∼ P

Proposition

n

√
P(IAn (X 1:n) |X 1:n)

a.s.� exp {∆P(A)} where

∆P(A) =
∑
A∈A

P(A) lnP(A) +
1
2

∑
A∈A

P(A) · ‖E (Σ−1
0 X |X ∈ A)‖2

log n
√
CRP prior log n

√
Gaussian Likelihood



Induced partitions

Let A be a fixed partition of Rd :

Let X1,X2, . . . ,X10000
iid∼ P

Proposition

n

√
P(IAn (X 1:n) |X 1:n)

a.s.� exp {∆P(A)} where

∆P(A) =
∑
A∈A

P(A) lnP(A) +
1
2

∑
A∈A

P(A) · ‖E (Σ−1
0 X |X ∈ A)‖2

log n
√
CRP prior log n

√
Gaussian Likelihood

straightforward computations using SLLN



MAP limits

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

n = 100



MAP limits

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

● ●

●

●

● ●

●

n = 500



MAP limits

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

● ●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

n = 1000



MAP limits

n =∞???



MAP limits

n =∞???

If there is such limit, is it a maximiser o ∆P?



MAP limits

n =∞???

If there is such limit, is it a maximiser o ∆P?

Theorem (R. 2019)

Every limit point of the sequence of convex hulls of the MAP partitions is a
maximiser of ∆P . (in Gaussian CRP model+P bounded&continuous)
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(xi )i∈Ck
| θ’s iid∼ Normal(θµk , θ
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Conjugate exponential likelihood

1

2

3

4

5

6

7

8

9

10

11

12

13

14 15

Π = {1, 3, 6, 7, 8}, {2, 5, 10, 12, 13}, {4, 9, 11, 14, 15}

θ1, . . . , θK
iid∼ H(θ) exp{χ · θ − τC(θ)− A(χ, τ)}

(xi )i∈Ck
| θ’s iid∼ h(x) exp{T(x) · θ − C(θ)}

sufficient stat.

obs. log-partition

par. log-partition
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Exchangeable Random Partition
e.g. the Chinese Restaurant Process, Pitman-Yor Process
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Theorem

For every pairwise distinct x1, . . . , xn ∈ Rd and ex. part. Π
the clusters of MAP in general exponential scheme are separated by the
contour lines of linear functionals of T .

the MAP in Normal-location scheme yields linear separability

the MAP in Normal-location-scale scheme yields quadratic separability
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The only proof in this presentation

Lemma

If h : RD → R is convex z1, . . . , zm ∈ RD , k ¬ m and Î ⊂ {1, . . . ,m}
maximises h

(∑
i∈I zi

)
over |I | = k then z Î and z{1,...,m}\Î are lin. sep.
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Example:
m = 5
k = 2



The only proof in this presentation

Lemma

If h : RD → R is convex z1, . . . , zm ∈ RD , k ¬ m and Î ⊂ {1, . . . ,m}
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Induced partitions

Let A be a fixed partition of Rd :

Let X1,X2, . . . ,X1000
iid∼ P

IA10000(X 1:10000) =
{
{. . .}, {. . .}, {. . .}, {. . .}, {. . .}

}
P(IA10000(X 1:10000) |X 1:10000) ≈???



Induced partitions

Proposition (in previous Gaussian CRP model)

n

√
P(IAn (X 1:n) |X 1:n)

a.s.� exp {∆P(A)} where

∆P(A) =
∑
A∈A

P(A) lnP(A) +
1
2

∑
A∈A

P(A) · ‖E (Σ−1
0 X |X ∈ A)‖2

log n
√
CRP prior log n

√
Gaussian Likelihood

straightforward computations using SLLN



Induced partitions

Proposition (in general exponential ERP model)

n

√
P(IAn (X 1:n) |X 1:n)

a.s.� exp {∆P(A)} where

∆P(A) =
∑
A∈A

P(A) lnP(A) +
∑
A∈A

P(A) · C∗
(
E (T (X ) |X ∈ A)

)

log n
√
ERP prior log n

√
Exponential Likelihood

C∗(t) = supθ
(
t · θ − C(θ)

)
not that straightforward analysis



Induced partitions

Proposition (in general exponential ERP model)

n

√
P(IAn (X 1:n) |X 1:n)

a.s.� exp {∆P(A)} where

∆P(A) =
∑
A∈A

P(A) lnP(A) +
∑
A∈A

P(A) · C∗
(
E (T (X ) |X ∈ A)

)

log n
√
ERP prior log n

√
Exponential Likelihood

C∗(t) = supθ
(
t · θ − C(θ)

)
not that straightforward analysis

Both limits can be expressed as ‖fn‖Ln(X ,µ) → ‖f ‖L∞(X ,µ),
(where fn → f pointwise)



Uniform example

(A) Normal, fixed covariance:

∆P(A) =
∑
A∈A

P(A) lnP(A) +
1
2

∑
A∈A

P(A) · ‖E (Σ−1
0 X |X ∈ A)‖2

(B) Normal, random (Wishart) covariance

∆P(A) =
∑
A∈A

P(A) lnP(A)− 1
2

∑
A∈A

P(A) · ln det
(
V(X |X ∈ A)

)

What are the maximisers for P = Unif([0, 1])?

they are divisions into subsegments p1 p2 p3 p4

(A) division into segments of equal length, such that the within cluster
variance is Σ0

(B) every division into subsegments gives the same (maximum)
score!
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Uniform example

(A) Normal, fixed covariance:

∆(p1, . . . , pn) =
∑
i¬n

pi ln pi +
1

2Σ0

∑
i

pi ·
(pi

2

∑
j<i

pj
)2

(B) Normal, random (Wishart) covariance
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Adjusted Wishart-covariance model

1

2

3

4

5

6

7
8

9

10

11

12

13

14 15

Π = {1, 3, 6, 7, 8}, {2, 5, 10, 12, 13}, {4, 9, 11, 14, 15}

θ1, . . . , θK
iid∼ Normal(·)×Wishart(·)

(xi )i∈Ck
| θ’s iid∼ Normal(θµk , θ

Σ
k )

Let the concentration
grow linearly with # obs
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θ1, . . . , θK
iid∼ Normal(·)×Wishart(Σ0,λn)

(xi )i∈Ck
| θ’s iid∼ Normal(θµk , θ

Σ
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expected covariance

concentration

Let the concentration
grow linearly with # obs



Linear growth of clusters for adjusted model
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n = 100

Result for adjusted model and CRP prior
If X1,X2, . . . ∼ P, where P has a bounded support, then

lim inf
n→∞

min
J∈ÎMAP (X 1:n)

|J|/n > 0.
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Result for adjusted model and CRP prior
If X1,X2, . . . ∼ P, where P has a bounded support, then

lim inf
n→∞

min
J∈ÎMAP (X 1:n)

|J|/n > 0.
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Result for adjusted model and CRP prior
If X1,X2, . . . ∼ P, where P has a bounded support, then

lim inf
n→∞

min
J∈ÎMAP (X 1:n)

|J|/n > 0.



Linear growth of clusters for adjusted model
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Result for adjusted model and CRP prior
If X1,X2, . . . ∼ P, where P has a bounded support, then

lim inf
n→∞

min
J∈ÎMAP (X 1:n)

|J|/n > 0.



∆P function for the adjusted model

∆P,λ(A) =
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+
∑
A∈A

P(A) logP(A)

as λ→ 0, this approaches random-covariance ∆

as λ→∞, this approaches fixed-covariance ∆

Maybe use its empirical equivalent to „score” clustering proposals?

We choose Σ0 to be the total covariance matrix

. . . its a natural upper bound for Σ0

. . . then the value for J = {[n]} is the same for every λ
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K -means divisions of 5 Gaussian-clusters dataset



Scoring the divisions using ∆̂λ

λ = 0

λ = 0.00017

λ = 0.00043

λ = 0.00081

λ = 0.0013

λ = 0.0021

λ = 0.0032

λ = 0.0049

λ = 0.0074

λ = 0.011

λ = 0.018

λ = 0.03

λ = 0.056

λ = 0.14

λ = ∞

-1

0

1

2

1 2 3 4 5 6 7 8 9 10 11 12
The number of clusters

Δλ

Black dots denote maximums



K -means divisions of 5 Gaussian-clusters dataset
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4 dimensional example of 7 clusters
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Quite representative; there is a range of λ’s for which we have a good choice.



Summary

Introduction: definitions and notation
Bayesian models for clustering, MAP

Results of R. (2019), for Gaussian CRP model with fixed covariance
linear separability of clusters
linear growth of clusters (interesecting a fixed ball)
limit formula for induced partitions
converge result for convex hulls of clusters

Generalisations
separability of clusters in general exponential ERP
limit formula for induced partitions in general exponential ERP
linear growth of clusters for adjusted Wishart-covariance model and
bounded input

Applications
Using empirical version of adjusted Wishart-covariance ∆ to score clustering
proposals



Thank you for your attention


