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Parcelation of the cortex
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Connectivities in the brain
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Connectivity information for population
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MRI-derived data: cortical thickness

1 We model the association between given response variable and
average cortical thickness

2 We consider the parcellation of the brain into 66 regions

(a) Parcellation of the brain (b) Cortical thickness
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Statistical model

1 y is n-dimensional vector of considered responses
2 Z ∈ Rn×66 and X ∈ Rn×m

3 ε ∼ N
(
0, σ2In

)
for some unknown σ2 > 0
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Penalized estimation

To �nd estimates of b and β we consider the optimization
problem of the form

argmin

b,β

{∥∥y − Zb − Xβ
∥∥2
2︸ ︷︷ ︸

model �t term

+ λ g(b)︸︷︷︸
penalty on b

}
.

1 How to select the penalty term g?
2 How to select an optimal regularization parameter λ ?
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Penalty selection

We want to get the property

�The stronger brain's regions i and j are connected based on

the connectivity matrix entry aij , the closer coe�cients b̂i
and b̂j are to each other.�

1 The natural idea then is to consider the penalty of the form

g (b) =
∑
i ,j

aij
(
bi − bj

)2
2 Note

∑
i ,j aij

(
bi − bj

)2
= bTQb, where Q is the Laplacian of A

de�ned as Q := D − A, for D := diag
(∑

j a1j , . . . ,
∑

j apj
)
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Connection with linear mixed models (LMM)

Consequently, we get the following form of the objective function

argmin
b,β

{∥∥y − Zb − Xβ
∥∥2
2

+ λbTQb
}
,

where Q is a Laplacian of A.

This problem is �equivalent� with LMM formulation
1 y = Zb + Xβ + ε, where β is a vector of �xed e�ects and b a

vector of random e�ects,
2 ε ∼ N

(
0, σ2I

)
,

3 b ∼ N
(
0, σ2bQ

−1),
4 λ, σ and σb are tied via λ = σ2/σ2b.
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Selection of regularization parameter
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Selection of regularization parameter
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Connectivity information types

Functional Connectivity Structural Connectivity

Which connectivity matrix should we use to de�ne Q?
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Brain lobes
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Brain lobes

FIRST 
LOBE
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Brain Lobes
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Brain Lobes
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Brain Lobes

𝐴1

𝐴2

𝐴3 𝐴4

𝐴5

𝐴6
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Brain Lobes
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Merging a few sources of information

Suppose that we have m positive semide�nite matrices,

Q1, . . .Qm

considered as potential candidates for the penalty.

AIMER: (Adaptive Information Merging Estimator for
Regression) is the solution to

argmin

b,β

{∥∥y − Zb − Xβ
∥∥2
2
+

m∑
i=1

λib
TQib

}
,

where λ1, . . . λn are tuning parameters.
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Connection with linear mixed models
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2 ε ∼ N

(
0, σ2I

)
,

3 b ∼ N
(
0,
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i=1
ωiQi
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,

4 λi 's, ωi 's and σ
2 are tied via λi = ωi · σ2.

Noninvertability problem is also addressed!
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The example

For m = 2 de�ne Q1 as the Laplacian and Q2 as identity
matrix

The penalty becomes λ1b
TQ1b + λ2‖b‖22

Method reduces to riPEER
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Simulation scheme

Two methods compared:
1 ridge: λQ := 0 (connectivity information is not used)

2 riPEER (both lambdas are selected in an adaptive way)

Axis of the plot
1 X axis:

diss(Atrue ,Aobs) :=
number of removed/added connections

number of all nonzero connections in Atrue

2 Y axis: MSEr := E
[
‖b̂−btrue‖22
‖btrue‖2

2

]
.
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Simulation results

0.0

0.1

0.2

0.3

0.00 0.25 0.50 0.75

dissimilarity between Atrue and Aobs

b 
es

tim
at

io
n 

M
S

E
r

ridge

Damian Brzyski 5 June 2020 24 / 33



Simulation results
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Simulation scheme

SIMULATED SIGNAL ESTIMATION
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Simulation scheme: multiple sources

A1

A2
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Simulation scheme: multiple sources

A1

A2

Parameter       is the probability 
that the entry of A comes fromA1
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Simulation scheme: multiple sources

A1

A2

Parameter       is the probability 
that the entry of A comes fromA1

Level of rewiring

„True” adjacency matrix 
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Simulation results

Damian Brzyski 5 June 2020 32 / 33



Real data analysis: some examples of estimates
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