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Connectivities in the brain
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Connectivity information for population
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|
MRI-derived data: cortical thickness

@ We model the association between given response variable and
average cortical thickness

@ We consider the parcellation of the brain into 66 regions
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Statistical model

y=7Zb+XB+e

© y is n-dimensional vector of considered responses

@ Z € R™% and X € R™™
@ ¢~ N(0,0°l,) for some unknown o2 > 0
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Statistical model

Provides some /
\_ information
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© y is n-dimensional vector of considered responses
@ Z € R™% and X € R™™
© ¢~ N(0,0°l,) for some unknown o2 > 0
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N
Penalized estimation

To find estimates of b and (3 we consider the optimization
problem of the form

. 2
ar%rgnn {l’y—Zb—XﬁH% + A g\(,bl }

)

model fit term penalty on b
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Penalized estimation

To find estimates of b and (3 we consider the optimization
problem of the form

. 2
ar%rgnn {l’y—Zb—XﬁH% + A g\(,bl }

model fit term penalty on b

© How to select the penalty term g7
@ How to select an optimal regularization parameter \ 7
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Penalty selection

We want to get the property

“The stronger brain’s regions / and j are connected based on
the connectivity matrix entry aj;, the closer coefficients b;
and b; are to each other.”
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Penalty selection

We want to get the property

“The stronger brain’s regions / and j are connected based on
the connectivity matrix entry aj;, the closer coefficients b;
and b; are to each other.”

@ The natural idea then is to consider the penalty of the form

g(b) = Z ajj (bj — bj>2

ij

@ Note Zi,j a,-j(b,- - bj)2 = bT Qb, where Q is the Laplacian of A
defined as @ := D — A, for D := diag(zj ay, ..., Zj apj)
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Connection with linear mixed models (LMM)

Consequently, we get the following form of the objective function

i —Zb—XB||> + AbTQb
ar%%nn {Hy 5H2 + Q },

where @ is a Laplacian of A.
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N
Connection with linear mixed models (LMM)

Consequently, we get the following form of the objective function

i ~Zb— X8|} + AbTQb},
ar%fgnn {Hy ﬁHz + Q }

where @ is a Laplacian of A.

This problem is “equivalent” with LMM formulation

Q@ y =2Zb+ X[+ e, where 3 is a vector of fixed effects and b a
vector of random effects,

Q¢ NN(O,JQ/),
Qb NN(O,O’%Q_l),

Q@ )\, oando, aretiedvia A =o02/0}.
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Selection of regularization parameter

—~ —~ 2
IDEA: definedas A = Z_Z where 2 and
b

6% are maximum likelihood estimates

from the corresponding linear mixed
model
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|
Selection of regularization parameter

- —~ 2
IDEA: definedas A = Z_Z where 2 and
b

6% are maximum likelihood estimates

from the corresponding linear mixed
model

PROBLEM: Neither Laplacian nor
normalized Laplacian is an invertible
matrix, which is required in computation
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Connectivity information types

25 a1 36 41 48 81 5

o
Functional Connectivity Structural Connectivity
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Connectivity information types

2% a1 @ a8 s

o i
Functional Connectivity Structural Connectivity

Which connectivity matrix should we use to define Q7
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Brain lobes
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Brain Lobes
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Brain Lobes
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|
Merging a few sources of information

Suppose that we have m positive semidefinite matrices,

Ql)"'Qm

considered as potential candidates for the penalty.
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considered as potential candidates for the penalty.

AIMER: (Adaptive Information Merging Estimator for
Regression) is the solution to
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Merging a few sources of information

Suppose that we have m positive semidefinite matrices,

Ql)"'Qm

considered as potential candidates for the penalty.

AIMER: (Adaptive Information Merging Estimator for
Regression) is the solution to

i —7b— X8| S \bTQibY,
argumin {Ily BlI, + 2_; Qb

)

where A1, ...\, are tuning parameters.
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Connection with linear mixed models

argmin {Hy—Zb—XﬁHz + Z)\;bTQ;b},
bp i=1
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Connection with linear mixed models

argmin {Hy—Zb—XﬁHz + ZA;bTQ;b},
bp i=1

This problem is “equivalent” with LMM formulation

Q@ y=2b+ X[+ e, where 3 is a vector of fixed effects and b a
vector of random effects,

Q¢ ~N(O,02/),
0 b N0, [SM, W],
2

Q )\/'s,w;'sand 02 are tied via )\ = w; - 0.
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Connection with linear mixed models

argmin {Hy—Zb—XﬁHz + ZA;bTQ;b},
bp i=1

This problem is “equivalent” with LMM formulation

Q@ y=2b+ X[+ e, where 3 is a vector of fixed effects and b a
vector of random effects,

Q¢ ~N(O,02/),
0 b N0, [SM, W],
Q \'s, wi'sand 02 aretiedvia \ =uw;- 0>

Noninvertability problem is also addressed!
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The example

o For m = 2 define Q; as the Laplacian and @, as identity
matrix

5 June 2020 22/33



|
The example

o For m = 2 define Q; as the Laplacian and @, as identity
matrix

o The penalty becomes A\1bT Qb + As||b||3

5 June 2020 22/33



|
The example

o For m = 2 define Q; as the Laplacian and @, as identity
matrix

o The penalty becomes A\1bT Qb + As||b||3
o Method reduces to riPEER
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Simulation scheme

Two methods compared:
Q ridge: A\g ;=0 (connectivity information is not used)

@ riPEER  (both lambdas are selected in an adaptive way)

Axis of the plot
Q@ X axis:

number of removed /added connections

diss(Af"e, A% =

number of all nonzero connections in Atrue

Q Y axis: MSEr .= {'Bbﬂ} .

[btr]3
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Simulation results
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Simulation results
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Simulation scheme
SIMULATED SIGNAL ESTIMATION

Graph given by adjacency matrix A€ Rewired graph which gives A°PS

Normalized Laplacian: (), ‘ Normalized Laplacian of rewired
— e graph was used to find the estimate,
b
N =
,,In\iertible Normalized Laplacian” : \/
Qtrue = Qtrue + 0.001 -7 MSEr defined as
[ - 2
b — by
~ MSEr: = El—” “ ”Z”Z]
True signal used in simulation: 1Berye ll3
b””ef»N(O, o'g ét_}%w) as a measure of estimation accuracy
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Simulation scheme: multiple sources

Az
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|
Simulation scheme: multiple sources

Parameter 7t is the probability
that the entry of A comes from A1

}

Az
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Simulation scheme: multiple sources

Parameter 7t is the probability
that the entry of A comes from A1
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Simulation scheme: multiple sources

A
Parameter 7't is the probability ,True” adjacency matrix
O ) that the entry of A comes from A1 . -
4 ) ( .] - -
A= [ { ] Level of rewiring|
L S Ty = 0.15
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Simulation scheme: multiple sources

Parameter 7t is the probability
that the entry of A comes from A1

,True” adjacency matrix
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Simulation results

02 MSE scors with rewiring level & MSE score with rewiring level 0.3
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Real data analysis: some examples of estimates
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Real data analysis: some examples of estimates

msPEER

0™ PEER

Damian Brzyski 5 June 2020 34 /33



Real data analysis: some examples of estimates
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Real data analysis: some examples of estimates
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