# The adaptive incorporation of multiple sources of information in Brain Imaging via penalized optimization

#### Damian Brzyski

#### Wrocław University of Science and Technology, Wrocław, Poland

#### 5 June 2020



Wrocław University of Science and Technology



## Parcelation of the cortex



## Connectivities in the brain



## Connectivities in the brain



## Connectivity information for population



Damian Brzyski

#### MRI-derived data: cortical thickness

- We model the association between given response variable and average cortical thickness
- We consider the parcellation of the brain into 66 regions



(a) Parcellation of the brain

(b) Cortical thickness

## Statistical model



• y is n-dimensional vector of considered responses •  $Z \in \mathbb{R}^{n \times 66}$  and  $X \in \mathbb{R}^{n \times m}$ •  $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_n)$  for some unknown  $\sigma^2 > 0$ 

## Statistical model



• y is n-dimensional vector of considered responses •  $Z \in \mathbb{R}^{n \times 66}$  and  $X \in \mathbb{R}^{n \times m}$ •  $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_n)$  for some unknown  $\sigma^2 > 0$ 

### Penalized estimation

To find estimates of  ${\it b}$  and  $\beta$  we consider the optimization problem of the form

$$\underset{b,\beta}{\operatorname{argmin}} \left\{ \underbrace{\left\| y - Zb - X\beta \right\|_{2}^{2}}_{\text{model fit term}} + \lambda \underbrace{g(b)}_{\text{penalty on } b} \right\}.$$

### **Penalized estimation**

To find estimates of  ${\it b}$  and  $\beta$  we consider the optimization problem of the form

$$\underset{b,\beta}{\operatorname{argmin}} \left\{ \underbrace{\left\| y - Zb - X\beta \right\|_{2}^{2}}_{\text{model fit term}} + \lambda \underbrace{g(b)}_{\text{penalty on } b} \right\}.$$

• How to select the penalty term g?

• How to select an optimal regularization parameter  $\lambda$  ?

#### **Penalty selection**

We want to get the property

"The stronger brain's regions *i* and *j* are connected based on the connectivity matrix entry  $a_{ij}$ , the closer coefficients  $\hat{b}_i$ and  $\hat{b}_j$  are to each other."

#### **Penalty selection**

We want to get the property

"The stronger brain's regions *i* and *j* are connected based on the connectivity matrix entry  $a_{ij}$ , the closer coefficients  $\hat{b}_i$ and  $\hat{b}_j$  are to each other."

• The natural idea then is to consider the penalty of the form

$$g(b) = \sum_{i,j} a_{ij} (b_i - b_j)^2$$

#### Penalty selection

We want to get the property

"The stronger brain's regions *i* and *j* are connected based on the connectivity matrix entry  $a_{ij}$ , the closer coefficients  $\hat{b}_i$ and  $\hat{b}_j$  are to each other."

• The natural idea then is to consider the penalty of the form

$$g(b) = \sum_{i,j} a_{ij} (b_i - b_j)^2$$

• Note  $\sum_{i,j} a_{ij} (b_i - b_j)^2 = b^T Q b$ , where Q is the Laplacian of A defined as Q := D - A, for  $D := diag(\sum_j a_{1j}, \dots, \sum_j a_{pj})$ 

## Connection with linear mixed models (LMM)

Consequently, we get the following form of the objective function

$$\underset{b,\beta}{\operatorname{argmin}} \left\{ \left\| y - Zb - X\beta \right\|_{2}^{2} + \lambda b^{T}Qb \right\},$$

where Q is a Laplacian of A.

## Connection with linear mixed models (LMM)

Consequently, we get the following form of the objective function

$$\underset{b,\beta}{\operatorname{argmin}} \left\{ \left\| y - Zb - X\beta \right\|_{2}^{2} + \lambda b^{T}Qb \right\},\$$

where Q is a Laplacian of A.

This problem is "equivalent" with LMM formulation

- $y = Zb + X\beta + \varepsilon$ , where  $\beta$  is a vector of fixed effects and b a vector of random effects,
- $\ \, \boldsymbol{\varepsilon} \sim \mathcal{N}(\boldsymbol{0}, \sigma^2 \boldsymbol{I}),$
- $\lambda$ ,  $\sigma$  and  $\sigma_b$  are tied via  $\lambda = \sigma^2 / \sigma_b^2$ .

## Selection of regularization parameter



**IDEA:** define  $\hat{\lambda}$  as  $\hat{\lambda} = \frac{\hat{\sigma}^2}{\hat{\sigma}_b^2}$  where  $\hat{\sigma}^2$  and  $\hat{\sigma}_b^2$  are maximum likelihood estimates from the corresponding linear mixed model

## Selection of regularization parameter



**IDEA:** define  $\hat{\lambda}$  as  $\hat{\lambda} = \frac{\hat{\sigma}^2}{\hat{\sigma}_b^2}$  where  $\hat{\sigma}^2$  and  $\hat{\sigma}_b^2$  are maximum likelihood estimates from the corresponding linear mixed model



**PROBLEM:** Neither Laplacian nor normalized Laplacian is an invertible matrix, which is required in computation

## **Connectivity information types**



**Functional Connectivity** 

Structural Connectivity

## **Connectivity information types**



Which connectivity matrix should we use to define Q?



Damian Brzyski











## Merging a few sources of information

Suppose that we have m positive semidefinite matrices,

 $Q_1,\ldots,Q_m$ 

considered as potential candidates for the penalty.

## Merging a few sources of information

Suppose that we have m positive semidefinite matrices,

 $Q_1,\ldots,Q_m$ 

considered as potential candidates for the penalty.

**AIMER:** (Adaptive Information Merging Estimator for Regression) is the solution to

$$\underset{b,\beta}{\operatorname{argmin}} \left\{ \left\| y - Zb - X\beta \right\|_{2}^{2} + \sum_{i=1}^{m} \lambda_{i}b^{T}Q_{i}b \right\},$$

## Merging a few sources of information

Suppose that we have m positive semidefinite matrices,

 $Q_1,\ldots,Q_m$ 

considered as potential candidates for the penalty.

**AIMER:** (Adaptive Information Merging Estimator for Regression) is the solution to

$$\underset{b,\beta}{\operatorname{argmin}} \left\{ \left\| y - Zb - X\beta \right\|_{2}^{2} + \sum_{i=1}^{m} \lambda_{i} b^{T} Q_{i} b \right\},$$

where  $\lambda_1, \ldots \lambda_n$  are tuning parameters.

## Connection with linear mixed models

$$\operatorname{argmin}_{b,\beta} \left\{ \left\| y - Zb - X\beta \right\|_{2}^{2} + \sum_{i=1}^{m} \lambda_{i} b^{T} Q_{i} b \right\},$$

### Connection with linear mixed models

$$\underset{b,\beta}{\operatorname{argmin}} \left\{ \left\| y - Zb - X\beta \right\|_{2}^{2} + \sum_{i=1}^{m} \lambda_{i}b^{T}Q_{i}b \right\},$$

This problem is "equivalent" with LMM formulation

- $\mathbf{v} = \mathbf{Z}\mathbf{b} + \mathbf{X}\beta + \varepsilon$ , where  $\beta$  is a vector of fixed effects and  $\mathbf{b}$  a vector of random effects.
- $\varepsilon \sim \mathcal{N}(0, \sigma^2 I),$
- $\bullet \ b \sim \mathcal{N}(0, \left[\sum_{i=1}^{m} \omega_i Q_i\right]^{-1}),$
- $\lambda_i$ 's  $\omega_i$ 's and  $\sigma^2$  are tied via  $\lambda_i = \omega_i \cdot \sigma^2$ .

### Connection with linear mixed models

$$\underset{b,\beta}{\operatorname{argmin}} \left\{ \left\| y - Zb - X\beta \right\|_{2}^{2} + \sum_{i=1}^{m} \lambda_{i}b^{T}Q_{i}b \right\},$$

This problem is "equivalent" with LMM formulation

- $y = Zb + X\beta + \varepsilon$ , where  $\beta$  is a vector of fixed effects and b a vector of random effects,
- $b \sim \mathcal{N}(0, \left[\sum_{i=1}^{m} \omega_i Q_i\right]^{-1}),$

•  $\lambda_i$ 's,  $\omega_i$ 's and  $\sigma^2$  are tied via  $\lambda_i = \omega_i \cdot \sigma^2$ .

Noninvertability problem is also addressed!

• For m = 2 define  $Q_1$  as the Laplacian and  $Q_2$  as identity matrix

- For m = 2 define  $Q_1$  as the Laplacian and  $Q_2$  as identity matrix
- The penalty becomes  $\lambda_1 b^{\mathsf{T}} Q_1 b + \lambda_2 \|b\|_2^2$

- For m = 2 define  $Q_1$  as the Laplacian and  $Q_2$  as identity matrix
- The penalty becomes  $\lambda_1 b^{\mathsf{T}} Q_1 b + \lambda_2 \|b\|_2^2$
- Method reduces to riPEER

## Simulation scheme

Two methods compared:

- ridge:  $\lambda_Q := 0$  (connectivity information is not used)
- riPEER (both lambdas are selected in an adaptive way)

#### Axis of the plot

X axis

 $diss(A^{true}, A^{obs}) := rac{ ext{number of removed/added connections}}{ ext{number of all nonzero connections in } A^{true}}$ 

• Y axis: 
$$MSEr := \mathbb{E}\left[\frac{\|\hat{b}-b^{true}\|_2^2}{\|b^{true}\|_2^2}\right]$$
.

## Simulation results



## Simulation results



## Simulation scheme

#### SIMULATED SIGNAL



#### ESTIMATION



Damian Brzyski











## Simulation results









