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Single index model

Yi = g(β′Xi , εi ), i = 1, . . . , n

Yi ∈ R - response variable

Xi ∈ Rp - predictor

β - true parameter

εi - random error

g - unknown function
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Single index model - examples

Linear model
Yi = β′Xi + εi

Modified linear model

Yi = g(β′Xi + εi )

Yi = g(β′Xi ) + εi
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More examples - binary regression

P(Yi = 1|Xi ) = g(β′Xi ), i = 1, . . . , n

g - unknown function

Logistic model

P(Yi = 1|Xi ) =
exp(β′Xi )

exp(β′Xi ) + 1

Probit model
P(Yi = 1|Xi ) = Φ(β′Xi )
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Variable selection

Find
T = {1 ≤ j ≤ p : βj 6= 0}

Even if p >> n

Function g is unknown, so β is not identifiable

Under mild assumptions it can be recognized up to positive
multiplicative constant
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Single index model

Yi = g(β′Xi , εi ), i = 1, . . . , n

No assumptions on distribution of errors, existence of their
moments etc.

Function g is unknown but increasing wrt first variable

Binary regression

P(Yi = 1|Xi ) = g(β′Xi ), i = 1, . . . , n

Function g is unknown but increasing

Robust variable selection

... and computationally fast
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Linear model

Linear model
Yi = β′Xi + εi

Lasso estimator

arg min
θ

1

n

n∑
i=1

(
Yi − θ′Xi

)2
+ λ |θ|1

|θ|1 =
∑p

j=1 |θj |
Least absolute deviation estimator with Lasso penalty

arg min
θ

1

n

n∑
i=1

∣∣Yi − θ′Xi

∣∣+ λ |θ|1

Time-consuming when n, p ∼ 1000
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Ranks

Response variables Y1, . . .Yn

Sort them Y(1) ≤ Y(2) ≤ Y(3) ≤ . . . ≤ Y(n)

Assign ranks R1, . . .Rn

RankLasso
min
θ

Q(θ) + λ |θ|1

Q(θ) =
1

n

n∑
i=1

(
Ri/n − θ′Xi

)2
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Procedures

Computationally fast

No new algorithmic machinery

Robust wrt to outliers and function g

What is estimated?
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Binary regression

Logistic model

P(Yi = 1|Xi ) =
exp(β′Xi )

exp(β′Xi ) + 1

Lasso estimator

arg min
θ

LogLike(θ) + λ |θ|1

|θ|1 =
∑p

j=1 |θj |
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Procedure

Treat Yi ’s as numeric and apply Lasso for linear regression

min
θ

1

n

n∑
i=1

(
Yi − θ′Xi

)2
+ λ |θ|1

Bühlmann, vd Geer (2011). Statistics for High-Dimensional
Data: Methods, Theory and Applications
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Binary regression

Q(θ) =
1

n

n∑
i=1

(
Yi − θ′Xi

)2

We estimate
θ0
bin = arg min

θ∈Rp
EQ(θ)

Relation between β and θ0
bin?
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Assumptions

(X1,Y1), . . . , (Xn,Yn) - i.i.d.

EX1 = 0

H = EX1X
′
1 - positive definite
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Assumptions

Assumption: For each θ ∈ Rp the conditional expectation
E(θ′X1|β′X1) exists and

E(θ′X1|β′X1) = dθβ
′X1

for a real number dθ ∈ R.
Satisfied in simple regression model, i.e. X1 ∈ R
X1 comes from the elliptical distribution (multivariate normal
distribution or t-distribution)

Hall, Li (1993, Ann. Stat.)
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Binary regression

If assumptions are satisfied and g is increasing

then there exists γ > 0 such that

(θ0
bin)j = γβj

for j = 1, . . . , p

Therefore, supp(β) = supp(θ0
bin).
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RankLasso

If assumptions are satisfied

g is increasing wrt first variable

cumulative distribution function of Yi is increasing

then there exists γ > 0 such that

(θ0
rank)j = γβj

for j = 1, . . . , p

Therefore, supp(β) = supp(θ0
rank).
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Properties in variable selection

Procedures are variable selection consistent under
“irrepresentable condition” - restrictive assumption, hardly
satisfied in practice, common for Lasso estimators.

Under much weaker assumption we can obtain

screening
T ⊂ T̂

or even separability of predictors

∀j∈T ,k /∈T |θ̂j | > |θ̂k |

We do not require function g to be known (except being
increasing)

We do not require any assumptions on error terms or function
g , except being increasing wrt first variable

Using thresholding or weighted (adaptive) procedures

Wojciech Rejchel Fast and robust procedures in high-dimensional variable selection
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Consistency in variable selection

Theoretical analysis of RankLasso is more involved than for
regular Lasso, because

Q(θ) =
1

n

n∑
i=1

(
Ri/n − θ′Xi

)2

is sum of dependent random variables

U-statistics theory is used
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Theorem

a ∈ (0, 1), q ≥ 1

predictors are subgaussian

cone invertibility condition is satisfied

n ≥ K1p
2
0 log(p/a)

λ ≥ K2

√
log(p/a)

n

With probability at least 1− K3a we have

|θ̂ − θ0|q ≤ K4p
1/q
0 λ
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Theorem

βmin = min
j∈T
|βj |

Our estimators are able to separate predictors

∀j∈T ,k /∈T |θ̂j | > |θ̂k |

if

βmin ≥
K1λ

γ
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Linear model

Yi = β′Xi + εi

Xi ∼ N(0,Σ)

Σ = I or Σjj = 1,Σjk = 0.3

ε ∼ Cauchy distribution

β = (3, . . . , 3︸ ︷︷ ︸
p0

, 0, . . . , 0︸ ︷︷ ︸
p−p0

)

p0 ∈ {3, 10, 20}
n ∈ {100, 200, 300, 400}
p ∈ {100, 400, 900, 1600}
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Estimators

RankLasso (rL)

λrL = 0.3

√
log p

n

adaptive RankLasso (arL)

thresholded RankLasso (rLth)

LAD-Lasso (LAD)

λLAD = 1.5

√
log p

n

Lasso with cross-validation (cv)
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Estimators

NWD - average number of wrong decisions
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Exponential model

Yi = exp(4 + 0.05β′Xi ) + εi

Xi ∼ N(0,Σ)

Σjj = 1,Σjk = 0.3

ε ∼ Cauchy distribution

β = (3, . . . , 3︸ ︷︷ ︸
p0

, 0, . . . , 0︸ ︷︷ ︸
p−p0

)

p0 ∈ {3, 10, 20}
n ∈ {100, 200, 300, 400}
p ∈ {100, 400, 900, 1600}
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Binary regression

P(Yi = 1|Xi ) =
exp(β′Xi )

exp(β′Xi ) + 1

Xi ∼ N(0,Σ)

Σjj = 1,Σjk = 0.5

n ∈ {100, 350, 600}
p ∈ {100, 1225, 3600}

β = (1,−1,−1, 1, . . . , 1︸ ︷︷ ︸
10

, 0, . . . , 0︸ ︷︷ ︸
p−10

, 1)

signs are chosen randomly

intercept = 1
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Lasso with Yi ∈ {0, 1}
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+ λ |θ|1
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Lasso for logistic regression with λ chosen by CV
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