Brain Connectivity-Informed Adaptive
Regularization for Generalized Outcomes

Jaroslaw Harezlak, Ph.D.

Professor and Interim Co-Chair
Department of Epidemiology and Biostatistics
Indiana University School of Public Health
Bloomington, IN, USA

May 22, 2020
INDIANA UNIVERSITY
SCHOOL OF
PUBLIC HEALTH
BLOOMINGTON

Jaroslaw Harezlak May 22, 2020 1/ 33



N
Outline

Motivating application

Brain structure and connectivity

Regularization methods

rPEER - ridgified Partially Empirical Eigenvectors for Regression
Simulation study

Brain structure and HIV infection

© 6 0 6 0 0 ©O

Discussion

Jaroslaw Harezlak May 22, 2020 2/ 33



|
HIV infection study - WUSM

© N = 299 HIV-infected individuals: 228 males, 71 females

» Duration of infection range: 0 - 33y (mean: 10.2, sd: 8.7)
> Age range: 18 - 84 y.o. (mean: 42.3, sd: 16)

© Imaging modalities
» T1 - anatomy
» DTI - structural connectivity
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Anatomy and connectivity

@ Anatomy

» MPRAGE protocol
» Processing using FreeSurfer software (version 5.1)
» Desikan-Killiany atlas - 66 cortical regions

© Structural connectivity

» DTI and maximal diffusion coherence model
» Density of connections between each pair of regions
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MRI data
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MRI-derived data: cortical thickness

@ Parcellation of the cortex into 66 regions

© Average cortical thickness
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(a) Parcellation of the brain (b) Cortical thickness
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Connections in the brain
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Connectivity matrices
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(a) Connectivity matrix: subject 1
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(b) Connectivity matrix: subject 2
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Population connectivity matrix
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Questions

@ Scientific
» Are changes in the brain structure associated with the HIV

infection?
» |s there any additional information provided by the structural

connectivity?

@ Statistical
» How to deal with the highly correlated predictors in the

regression models?
» How to incorporate the structural connectivity information in

the regression models?
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Statistical model

y=7h+XB+e

@ y — n-dimensional response (e.g. NP domain score)

@ Z € R™% gpd X € R™™
Q@ ¢~ N(O, 0'2/n) for some unknown o2 > 0
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Statistical model

Provides some /
\_ information
~e—gboutb /

@ y — n-dimensional response (e.g. NP domain score)
@ Z € R™% gpd X € R™™
Q@ ¢~ N(O, 02/n) for some unknown o2 > 0
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Penalized estimation

To find the estimates of b and 3, we consider the
optimization problem of the form

i —Zb—XB|IIF + ) g(b) L.
arg[;)r;nn {My BH% i() }

7 modelﬁ term penalty on b
@ g(b)=>_,b> —> Ridge estimate
@ g(b)=>_.|b] — LASSO estimate

o g(b) = ||Lb||3 — Generalized ridge
T. W. Randolph, J. Harezlak, Z. Feng, Structured penalties for functional linear

models — partially empirical eigenvectors for regression, Electronic Journal of
Statistics (2012)
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Desired property of the estimate, b

“Stronger connections between the brain regions |
and j result in more similar coefficients b; and b;.”
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Penalty selection

The natural choice of the penalty is
2
g(b) =) aj(bi—by)"
iJ

Q d = Zk Ai.
Q@ D= diag(dl, e d66)
@ QR=D-A [Laplacian of A]

Then:

S a(bi— by)* = b7 Qb.

ij
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Connections with the linear mixed models (LMM)

Our objective function becomes

. 2 T
ar%fgm {Hy—Zb—XﬂH2 + Ab Qb}.

This optimization problem is “equivalent” to the LMM formulation

Q@ y=/2b+ XS+ ¢, where (3 is a vector of fixed effects and b a
vector of random effects,

@ & ~N(0,0%),
5] bNN(O, aiQfl),

Q )\ o and o, are connected via A= az/ai.
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Selection of the regularization parameter

—~ —~ 2
IDEA: defineXas A = Z_Z where 2 and
b

6% are maximum likelihood estimates

from the corresponding linear mixed
model

PROBLEM: Laplacian is not an invertible
matrix, which is required in computation
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The method

riPEER (ridgified Partially Empirical Eigenvectors for Regression)

Lep . 2
] = argmin (s~ 26~ X3 + 200708 + auli3 )
B graph part ridge part

| Ag » A | | Ap = Ay | | Ag < A |

Figure 3: Different shapes of the set {b: Aob" Qb+ Agl|b|[3 < 1} for p=2.
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Connections with the linear mixed models (LMM)

riPEER (ridgified Partially Empirical Eigenvectors for Regression)

Lep . 2
lgp} = ar%frﬂun {Hy—Zb—Xﬁ”2 + bT()\QQ—l—)\RI)b}

This problem is “equivalent” to the LMM formulation

Q@ y=/2b+ XS +¢, where (3 is a vector of fixed effects and b a
vector of random effects,

Q ENN<O,O'2I>1
(5] bNN(O, (U%)Q—i-(ff-\,/)_l),

Q@ M\ A\r, 0, 0@ and or are connected via
AQ = az/aé, A\g = 02/0%.
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Simulation scheme

SIMULATED SIGNAL ESTIMATION

Graph given by adjacency matrix A Distorted graph

0.1

0.4

U

‘ Laplacian : Qe Laplacian of distorted graph was
used to find the estimate,

L b
»Invertible Laplacian” : @
Qtrue = Qtrye + 0.001 -] MSEr defined as

~ 2
b—»b
@ MSEr: = E 7” true”z]

2
- R 1beruellz
True signal used in simulation:
true 2A-1 as a measure of estimation accurac
b ~N(O, Op Qtrue) v
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Simulation scheme —
distorted connectivity matrices
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Simulation scheme

Three methods compared:
Q ridge: A\g ;=0 (connectivity information is not used)
Q@ naive: \p =0, Q@ — 6 (only g is selected)
@ riPEER  (both lambdas are selected in an adaptive way)
Axis of the plot
Q@ X axis:

number of removed/added connections

diss(A!e, A% =

number of all nonzero connections in Atrue

Q Y axis: MSEr :=E {w} .

[[btre]3
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Simulation results
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Simulation results
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Simulation results
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Results: HIV study

@ Association between cortical thickness and speed of information
processing

© 66 considered brain's regions
@ N =199 individuals
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Results: Speed of Information Processing

riPEER estimate of b
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o Cortical regions: lingual|L|, precentral[L],
superiorparietal[L], lateralorbitofrontal[R], precentral[R],
superiorparietal[R], supramarginal[R],
medialorbitofrontal[L], posteriorcingulate[R]
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Non-Gaussian distributions

o ¥i ~ member of an Exponential family of distribution
o Consider an optimization problem of the form

argmin {—zlog/ik(y; 8,b) + g(b) }
b’ﬂ ~ Vv - v

model fit term penalty on b

» 8\(b) := Agb" Qb + Ar||blI3
o Ao and Ag are selected based on the equivalence with
GLMM
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: HIV4 vs. HIV-

HIV data
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Contributions: riPEER and griPEER

@ Brain connectivity informed regularization
methods for regression, Statistics in Biosciences,
April 2019, Volume 11, Issue 1, 47-90

mdpeer R package is available online at
https://CRAN.R-project.org/package=mdpeer

@ Connectivity-Informed Adaptive Regularization
Under non-Gaussian Design, doi:
https://doi.org/10.1101/322420

griPEER Matlab software is available online at
https://github.com /dbrzyski/griPEER
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Conclusions and Discussion

©

Regularization methods using a priori information in brain imaging
setting in a principled way.

Additional (external) information quantified via a Laplacian
matrix.

Penalty parameters chosen in an adaptive way via ML/REML.
The more knowledge one has about informative structure, the
more specific one can be in defining the penalty matrix.

Use of structural connectivity to inform the associations between
cortical thickness and either NP outcomes (continuous) or HIV
status (binary).
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