Wearable devices statistical learning to the rescue

Jaroslaw Harezlak, Ph.D.

Professor and Interim Co-Chair Department of Epidemiology and Biostatistics School of Public Health Indiana University, Bloomington, IN, USA

> May 22, 2020 Zoom, Universe

Outline

Wearable and implantable devices

- Overview of the accelerometry data
- Micro-scale analysis
 - Detection and analysis of walking
 - Gait features
- Macro-scale analysis

Accelerometry data in health research: challenges and opportunities

Review and examples Statistics in Biosciences, 1-28, 2019

Authors:

<mark>Marta Karas</mark>

Jiawei Bai

Marcin Strączkiewicz

Jaroslaw Harezlak

Nancy Glynn Tamara Harris Vadim Zipunnikov Ciprian Crainiceanu Jacek Urbanek

Wearable and Implantable Technology

- Wearable and implantable devices are smart electronic devices (electronic device with microcontrollers) that can be worn on the body as implants or accessories
- Emerging technology
- Growing popularity in health research

Actigraphy

- Actigraphy: non-invasive monitoring of activity
- Accelerometer records human movement

Other wearable/implantable devices

Major data challenges

- Data size
- Complexity and heterogeneity
- Lack of standardized data collection protocols
 - Device type
 - Device location
 - Wear/non-wear
 - No. of days of observations

Collaboration

Macro- and Micro-scale

• Macro-scale – summarized data (1-minute intervals)

• Micro-scale – raw accelerometry data (10Hz+)

Micro-scale analysis

- Activity type recognition
 - Detection of walking, driving
 - Climbing stairs, resting, sedentary vs. upright

Why walking?

- Common form of physical activity
- Features of walking related to:
 - Survival
 - Mild Cognitive Impairment
 - Dementia
 - Stroke

Urbanek, J, Zipunnikov, V, Harris, T, Crainiceanu, C, **Harezlak, J**, Glynn, NW, Validation of gait characteristics extracted from raw accelerometry during walking against measures of physical function, mobility, fatigability, and fitness, The Journals of Gerontology: Medical Sciences, 2018 Apr 17;73(5):676-681

Data heterogeneity

Walking on level ground

Down/up/down stairs

Courtesy of Marta Karas

Goal: segment strides from accelerometry walking data

Karas, M., Straczkiewicz, M., Fadel, W., **Harezlak, J.**, Crainiceanu, M., Urbanek, J., Adaptive empirical pattern transformation (ADEPT) with application to walking stride segmentation, Biostatistics (accepted)

Characteristics of walking

Urbanek, J, Harezlak, J, Glynn, NW, Harris, T, Crainiceanu, C, Zipunnikov, V, Stride variability measures derived from wrist-and hip-worn accelerometers, Gait & Posture 52 (2017) 217–223

Urbanek, J, Zipunnikov, V, Harris, T, Fadel, W, Glynn, N, Crainiceanu, C, Harezlak J, Prediction of sustained harmonic walking in the free-living environment using raw accelerometry data. Physiological measurement 39 (2), 02NT02

DECOS Study @ University of Pittsburgh

POPULATION:

N = 51 (26 women) enrolled in the

DEVELOPMENT EPIDEMIOLOGIC COHORT STUDY (DECOS)

AGE: BETWEEN 70 AND 90 (MEDIAN = 78, SD = 5.68),

BMI: BETWEEN 20.5 AND 37.9 (MEDIAN 25.9, SD = 3.91)

DATA:

FREE-LIVING DATA COLLECTED FOR 7 DAYS LEFT AND RIGHT WRISTS: ACTIGRAPH GT3X+ (80HZ) HIP: ACTIGRAPH GT3X+ (80HZ) THIGH: ACTIVPAL 3 (20HZ) TREATED AS SILVER STANDARD

Sedentary vs. upright

Sitting/Standing Results

Left wrist

Right wrist

Method			SedUp				SS			SedUp				SS		
Window [s]		15	30	45	60	75	90	-	15	30	45	60	75	90	-	
TPR	Median	0.79	0.81	0.83	0.83	0.84	0.83	0.66	0.82	0.83	0.84	0.85	0.86	0.86	0.65	
TNR	Median	0.90	0.90	0.91	0.91	0.91	0.91	0.85	0.91	0.92	0.92	0.93	0.93	0.93	0.88	
MAPE [%]		13.3	13.0	12.7	12.6	12.6	12.5	18.2	15.7	15.3	15.2	15.0	15.1	15.1	19.5	
MPE [%]		4.1	4.5	3.7	3.4	3.5	2.9	4.1	5.3	4.6	5.6	4.3	4.5	4.5	6.7	

Results (left wrist)

Micro-scale analysis Summary

- Objective quantification of physical activity
- Objective measures of physical performance, fatigability, mobility and fitness (free-living)
- Algorithm development
- Statistical learning methods

Macro-scale analysis

- Aggregated 1-minute intervals
- General questions

National Health and Nutrition Examination Survey

- US nationally representative sample
- Physical activity data for ~12 000 participants
- 7 consecutive days of observation
- ~10,000 observations per subject
- Variety of clinical and demographic outcomes
- Linked mortality data
- Publicly available dataset
- Big data challenges

PA data

Macro-scale challenges

- Data format, storage and structure
- Start times of monitoring periods
- Different number of days across subjects
- Missing data due to non-wear

Data processing pipeline

Macro-scale: summary

- Curating data is extremely time intensive
- Proposed pipeline:
 - efficient analysis of PA data
 - fast complex analysis
 - applied to data from NHANES and BLSA

Acknowledgements

University of Wroclaw

• Michal Kos (Statistics)

Johns Hopkins School of Medicine

- Jacek Urbanek (Biostatistics)
- Marta Karas (PhD student)
- Ciprian Crainiceanu (Biostatistics)
- Vadim Zipunnikov (Biostatistics)

Indiana University

• William Fadel (Biostatistics)

Harvard University

• Marcin Straczkiewicz (Biostatistics)

University of Pittsburgh

• Nancy Glynn (Epidemiology)

Thank you