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Introduction to Compressed Sensing Sparsity Notion and Original Formulation

Sparsity: Most of components are zero

Sparsity Level: Number of nonzero entries

Compressiblity: Well-approximated by sparse signals

Compressed Sensing
To recover a sparse vector x ∈ RN from a measurement vector y ∈ Rm
with y = Ax (possibly subject to errors) and A ∈ Rm×N (m� N) is a

measurement matrix.

Problem Formulation
Let ‖x‖0 := Card(x), the original CS problem can be modeled below:

min
x∈RN

‖x‖0 subject to y = Ax (P0).

Applications
Engineering, Statistics, Signal and Image Processing, and etc.
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Introduction to Compressed Sensing Algorithms in Compressed Sensing

Algorithms in Compressed Sensing

Sparsity based Optimization Algorithms
Since `p → `0 as p ↓ 0, one can approximate (P0) by the following:

min
x∈RN

‖x‖p subject to y = Ax.

Greedy Algorithms
They directly tackle the original problem by making a local optimal

decision at each step with an attempt to find a global optimal solution.

Thresholding based Algorithms
Most of them solve the square system ATAx = AT y through a fixed-point

method and exploit hard thresholding operator.
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Introduction to Compressed Sensing Main Problems Used in Sparse Optimization

Main Problems Used in Sparse Optimization

Generalized Basis-Pursuit

min
x∈RN

‖x‖p subject to Ax = y

Generalized Basis-Pursuit Denoising I

min
x∈RN

‖x‖p subject to ‖Ax− y‖2 ≤ ε

Generalized Basis-Pursuit Denoising II

min
x∈RN

‖Ax− y‖2 subject to ‖x‖p ≤ η

Generalized Ridge Regression

min
x∈RN

1

2
‖Ax− y‖22 + λ‖x‖pp

Generalized Elastic Net

min
x∈RN

1

2
‖Ax− y‖22 + λ1‖x‖rp + λ2‖x‖22
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Introduction to Compressed Sensing Geometry of Main Problems

Geometry of BPp and BPDNp for Different p’s

Figura: Geometries of BP and BPDN for different values of p

A Geometrical Illustration
0 < p < 1 −→ A good choice but nonconvex!

p = 1 −→ A good choice and results in a convex program!

p > 1 −→ Not a good choice!
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Solution Uniqueness to Convex PA Functions `1-Norm based Optimization

`1-Norm based Optimization

In sparse recovery, the desired vector is often a solution for one of the

following problems:

min
x∈RN

‖x‖1 subject to Ax = y (BP)

min
x∈RN

‖x‖1 subject to ‖Ax− y‖2 ≤ ε (BPD I)

min
x∈RN

1

2
‖Ax− y‖22 subject to ‖x‖1 ≤ η (BPD II)

min
x∈RN

1

2
‖Ax− y‖22 + λ‖x‖1 (LASSO)

Note that ‖.‖1 is not strictly convex =⇒ nonunique solution!

Is this important?

If not, recovery process is not successful!
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Solution Uniqueness to Convex PA Functions Literature Review on Individual Recovery

A Review on Solution Uniqueness (Individual Recovery)

• Foucart established some results for the problems (BP) and (BPD I).

• Zhang et al. established necessary and sufficient conditions for the

mentioned problems when ‖.‖22 is replaced with a strictly convex

smooth function. Later, they replaced ‖x‖1 by ‖Ex‖1.

• Gilbert replaced ‖.‖1 with a polyhedral gauge function:

A convex piecewise affine function that is nonnegative, positively

homogeneous of degree 1, and vanishes at 0.

• Zhao established necessary and sufficient conditions for nonnegative

sparse vectors that satisfy an equality linear system.

Is there a room to improve?

Y es!
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Solution Uniqueness to Convex PA Functions Motivations and Contributions

Motivations and Contributions

Motivations

• To add general linear inequality constraints −→ Dantzig selector:

min
x∈RN

‖x‖1 subject to ‖AT (Ax− y)‖∞ ≤ ε.

• To go beyond ‖x‖1 and ‖Ex‖1 → fused LASSO:

min
x∈RN

‖Ax− y‖22 + λ1 · ‖x‖1 + λ2 · ‖D1x‖1.

• Explicit dual-based conditions → easy and computationally favorable.

Contributions

• Added general linear inequality constraints.

• Considered convex piecewise affine functions, including `1-norm.

• Developed a unifying approach that recovers all the known results and

enables us to tackle new problems.
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Solution Uniqueness to Convex PA Functions General Framework

General Framework

Let A ∈ Rm×N , C ∈ Rp×N and f : Rm → R be a C1 strictly convex

function. Further, assume g(x) is a convex piecewise affine function.

Main Question
Given a feasible point x∗ for any of the below problems, under which

conditions this vector is the unique solution?

min
x∈RN

g(x) subject to Ax = y and Cx ≥ d (BP-like)

min
x∈RN

g(x) subject to f(Ax− y) ≤ ε and Cx ≥ d (BPD I-like)

min
x∈RN

f(Ax− y) subject to g1(x) ≤ η1, . . . , gr(x) ≤ ηr and Cx ≥ d

(BPD II-like)

min
x∈RN

f(Ax− y) + g(x) subject to Cx ≥ d (LASSO-like)
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Solution Uniqueness to Convex PA Functions Preliminaries

Preliminaries (Convex Piecewise Affine Functions)

Let g : RN → R be a convex piecewise affine (PA) function:

g(x) = max
i=1,2,...,l

(
pTi x+ γi

)
.

For x∗ ∈ RN with Cx∗ ≥ d, define α := {i ∈ {1, . . . , p} | (Cx∗−d)i = 0},

I :=
{
i ∈ {1, . . . , l} | pTi x∗ + γi = g(x∗)

}
and W :=

 pTi1
...

pTi|I|

 ∈ R|I|×N .

Finding the matrix W is equivalent to finding the convex hull generators of

∂g(x∗).
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Solution Uniqueness to Convex PA Functions A key Lemma

A Key Lemma

Lemma

Let A ∈ Rm×N and H ∈ Rr×N . Then,

{u ∈ RN | Au = 0, Hu ≥ 0} = {0}

if and only if the following conditions hold:

(i) {u ∈ RN | Au = 0, Hu = 0} = {0}; and

(ii) There exist z ∈ Rm and z′ ∈ Rr++ such that AT z = HT z′.

Main Idea of Proof
Define the linear program:

max 1THu subject to Au = 0, Hu ≥ 0.

Then, {u ∈ RN | Au = 0, Hu ≥ 0} = {0} if and only if

(i) {u ∈ RN | Au = 0, Hu = 0} = {0}; and

(ii’) u∗ = 0 is the optimal value.
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Solution Uniqueness to Convex PA Functions Unique Solution to the Basis Pursuit-like Problem

Basis Pursuit-like Problem

Theorem

Let x∗ be a feasible point of the optimization problem (BP-like). Then x∗

is its unique minimizer if and only if the following conditions hold:

(i) {v ∈ RN | Av = 0, Cα•v = 0, Wv = 0} = {0}; and

(ii) There exist w ∈ Rm, w′ ∈ R|α|++, and w′′ ∈ R|I| with 0 < w′′ < 1 and

1Tw′′ = 1 such that ATw − CTα•w′ +W Tw′′ = 0

Main Steps of Proof
1. For sufficiently small ‖v‖, we have g(x∗ + v) = g(x∗) + maxi∈I p

T
i v.

2. x∗ is the unique solution if and only if v∗ = 0 for

min
v∈RN

(
max
i∈I

pTi v
)

subject to Av = 0, Cα•v ≥ 0.

3. v∗ = 0 is the unique solution of this problem if and only if

{v ∈ RN | Av = 0, Cα•v ≥ 0, max
i∈I

pTi v ≤ 0 [or Wv ≤ 0]} = {0}.
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Special Cases Arising from Applications Finding Matrix W for `1-norm Function

Finding Matrix W for `1-norm Function

Let g : Rk → R be such that g(z) := ‖z‖1 = max1,...,2k p
T
i z; where each

pi ∈ {(±1, . . . ,±1)T }.

Given z∗ ∈ Rk, let S = supp(z∗), I := {i ∈ [2k] | pTi z∗ = ‖z∗‖1} and

b := sign(z∗S) ∈ R|S|. Then, |I| = 2|S
c|.

In fact, Ŵ =
[
Ŵ•S Ŵ•Sc

]
∈ R|I|×k where Ŵ•S = 1.bT and each row of

Ŵ•Sc is of the form (±1, . . . ,±1) ∈ R|Sc|. For example, if |Sc| = 2, then

Ŵ•Sc =


1 1

1 −1
−1 1

−1 −1

 ∈ R|I|×N .
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Special Cases Arising from Applications Finding Matrix W for `1-norm Function

Lemma

For the given z∗ ∈ Rk, the matrix Ŵ•Sc ∈ R|I|×k defined above satisfies:

1. The columns of Ŵ•Sc are linearly independent.

2. For any row ŴiSc , there is another row such that ŴjSc = −ŴiSc .

3. conv
{
Ŵ T
iSc | i = 1, . . . , |I|

}
=
{
u ∈ R|Sc| | ‖u‖∞ ≤ 1

}
, and

|I|∑
i=1

λiŴ
T
iSc |

|I|∑
i=1

λi = 1, λi > 0, ∀i ∈ [I]

 = {u | ‖u‖∞ < 1} .

What If g(x) = ‖Ex‖1 with E ∈ Rk×N?
Given x∗, let S = supp(Ex∗), I := {i ∈ [k] | pTi Ex∗ = ‖Ex∗‖1} and

b̃ := sign(Ex∗S) ∈ R|S|. Then, since ∂g(x∗) = ET∂‖.‖1(Ex∗), we have

W =
[
Ŵ•S Ŵ•Sc

] [ ES•
ESc•

]
= 1.bT + Ŵ•ScESc• s.t. b := ETS•b̃. (1)
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Special Cases Arising from Applications Finding Matrix W for `1-norm Function

Lemma

Let the matrix W be defined in (1) for the function g(x) = ‖Ex‖1 at x∗.

For a given v ∈ RN ,Wv = 0 if and only if bT v = 0 and ESc•v = 0

Proposition

Let g(x) = ‖Ex‖1, and x∗ be feasible point of of the problem (BP-like).

Then x∗ is the unique minimizer if and only if the following conditions

hold:

(a) The matrix

 A

Cα•
ESc•

 has full column rank; and

(b) There exist u ∈ Rm, u′ ∈ R|α|++, and u′′ ∈ R|Sc| with ‖u′′‖∞ < 1 such

that ATu+ CTα•u
′ − ESc•u′′ = b.

Main Idea of the Proof :

Use the above Lemma and the part (3) in Lemma on the previous page.
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Special Cases Arising from Applications Nonnegative Constraints

Nonnegative Constraints

Lemma

Let C = IN and d = 0. Then a feasible x∗ is the unique minimizer of

(BP-like) with S being its support if and only if the following conditions

hold:

(i) The columns of A•S are linearly independent columns.

(ii) There exists u ∈ Rm such that AT•Su = 1 and AT•Scu < 1.

Main Idea for the Proof :

In this case, we have b̂ = (sign(x∗S)) = 1 ∈ R|S|, α = Sc, CαS = 0 and

CαSc = IScSc .

It suffices to show that AT•Scu < 1 is equivalent to ‖AT•Scu+ u′‖∞ < 1 for

some u′ > 0.

Ahmad Mousavi and Jinglai Shen (UMN) Solution Uniqueness to Problems Involving Convex PA Functions with Applications to Constrained `1-MinimizationJuly 10, 2020 16 / 20



17/20

Special Cases Arising from Applications Unique Solution to the Basis Pursuit Denoising I-like Problem

Basis Pursuit Denoising I-like Problem

Theorem

Let x∗ be a feasible point of (BPD I-like).

C1. Suppose f(Ax∗ − y) < ε. Then x∗ is the unique minimizer of (BPD

I-like) if and only if {v | Cα•v = 0, Wv = 0} = {0} and there exist

z ∈ R|α|++ and z′ ∈ R|I| with 0 < z′ < 1 and 1T z′ = 1 such that

CTα•z =W T z′.

C2. Suppose f(Ax∗ − y) = ε. Then x∗ is the unique minimizer of (BPD

I-like) if and only if the following hold:

2.i {v | Av = 0, Cα•v = 0, Wv = 0} = {0}.
2.ii There exist z ∈ Rm, z′ ∈ R|α|++, and z′′ ∈ R|I| with 0 < z′′ < 1

and 1T z′′ = 1 such that AT z − CTα•z′ +W T z′′ = 0.

3.iii If K := {v |
(
∇f(Ax∗ − y)

)T
Av < 0, Cα•v ≥ 0} 6= ∅, then

there exist w ∈ R|α|+ , and w′ ∈ R|I|+ such that

AT∇f(Ax∗ − y)− CTα•w +W Tw′ = 0.
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Special Cases Arising from Applications Unique Solution to the Basis Pursuit Denoising I-like Problem

Main Steps of the Proof for BPD I-like

Case 1:

Since f(Ax− y) ≤ ε is inactive, through continuity of f , consider

min g(x) subject to Cx ≥ d

Case 2:

1. r(Av) := f(Ax∗ − y +Av)− f(Ax∗ − y)−
(
∇f(Ax∗ − y)

)T
Av. Due

to strict convexity: r(Av) ≥ 0 and r(Av) = 0 if and only if Av = 0.

2. Let h := AT∇f(Ax∗ − y) and g̃(v) := maxi∈I p
T
i v. Consider

min g̃(v) subject to hT v + r(Av) ≤ 0, Cα•v ≥ 0.

3. v∗ = 0 is the unique solution of the latter if and only if

(a) Uniquely u∗ = 0 = argmin g̃(u) subject to Av = 0, Cα•v ≥ 0.

(b) If K := {v | hT v < 0, Cα•v ≥ 0} 6= ∅, then g̃(u) > 0 for all u ∈ K.

4. Use the Motzkin’s Transposition theorem for (b).
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Special Cases Arising from Applications Numerical Verification of the Solution Uniqueness Conditions

How to Verify These Conditions?

Solution uniqueness criteria that we found consist of:

(a) full column rank condition for a matrix −→ Linear Algebra

(b) consistency of a linear system with non-strict inequalities −→ LP

(c) consistency of another linear system with strict inequality −→ ?

Lemma

Let A ∈ Rm×N , y ∈ Rm be given. Then, the linear inequality system

Ax = y, x > 0;

has a solution if and only if the following linear program is solvable and

attains a positive optimal value:

max ε subject to Ax = y, x ≥ ε.1, ε ≤ 1.
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